Filtrage analogique

• **Définition**

Le filtrage est une forme de traitement de signal, obtenu en envoyant le signal à travers un ensemble de circuits électroniques, qui modifient son spectre de fréquence et/ou sa phase et donc sa forme temporelle.

Il peut s'agir soit:

- d'éliminer ou d'affaiblir des fréquences parasites indésirables
- d'isoler dans un signal complexe la ou les bandes de fréquences utiles.

• **Domaines d'application**

- > Traitement de signaux audio, vidéo, radio...
- > Télécommunications, télémétrie...
- > Instrumentation scientifique, médicale, radars...
- ➤ Acquisition numérique de données (anti-repliement)
- ➤ Réjection de bruit (alimentation électrique...)

• Différents types de filtres

ТҮРЕ	COMPOSANTS	SPECIFITES
Filtre numérique	Circuits logiques intégrés	 ▶ Signaux numérisés ▶ F < 100MHz ▶ convient en grande série ▶ entièrement programmable
Filtres passifs	Circuit discret L et C, Composants piézoélectriques (quartz)	 ▶ F élevée ▶ pas d'alimentation ▶ non intégrable
Filtres actifs	AIL, R et C	 ▶ F < 1 MHz ▶ besoin d'alimentation ▶ tension filtrée faible < 12V
Filtres à capacité commutée	AIL, Interrupteur commandé MOS, R et C intégré	 ▶ F < qq MHz ▶ besoin d'alimentation ▶ intégrable ▶ fréquence programmable

- -Type: passe-bas, passe-haut, passe-bande, coupe-bande, passe-tout.
- fréquence(s) de coupure
- pente des variations (liée à l'ordre du filtre)
- retard de phase
- retard de groupe

Ces filtres sont définis par leurs fonctions de transferts complexe H(jw), Module H(w) = |H(jw)|, le Gain en dB $G_{dB} = 20\log(H(w))$ et l'argument $\varphi = \arg(H(w))$.

Filtres passif

- Définition

- <u>Filtre passif</u>: le gain maximal est inférieur ou égal à 0dB : **Gmax£0dB** (la structure est réalisée uniquement à l'aide de composants passifs : résistances, condensateurs, inductances).

- <u>La fréquence de coupure f</u>C

Pour les filtres passe haut et passe bas on définit la fréquence de coupure f_C comme étant la fréquence pour laquelle $G(dB)=G_{MAX}$ - 3dB. Elle s'obtient directement grâce au diagramme de Bode du gain.

- La bande passante BP

Pour les filtres **passe bande** on définit **la bande passante BP** comme étant la plage de fréquences pour laquelle le filtre laisse passer les fréquences.

Il existe 2 fréquences de coupures \mathbf{f}_{C1} et \mathbf{f}_{C2} . Si on considère que $\mathbf{f}_{C2} > \mathbf{f}_{C1}$ alors $\mathbf{BP} = \mathbf{f}_{C2} - \mathbf{f}_{C1}$.

- <u>La bande réjectrice BR</u>

Pour les filtres **réjecteur de bande** on définit **la bande réjectrice BR** comme étant la plage de fréquences pour laquelle le filtre supprime les fréquences.

Il existe 2 fréquences de coupures \mathbf{f}_{C1} et \mathbf{f}_{C2} . Si on considère que $\mathbf{f}_{C2} > \mathbf{f}_{C1}$ alors $\mathbf{BR} = \mathbf{f}_{C2} - \mathbf{f}_{C1}$.

- Fonction de transfert

Le comportement d'un filtre est défini par l'étude fréquentielle de la fonction de transfert entre la tension de sortie et la tension d'entrée du filtre.

• Filtres passifs d'ordre 1

- Filtre passe bas

- Sélection des fréquences basses.
- Elimination des fréquences supérieures à *la* fréquence de coupure.
- Bande passante $BP=[0, f_c]$.

- Fonction de transfert du 1^{ier} ordre

Le filtre peut être de type RC ou RL

$$H(jw) = \frac{H_0}{1 + j\frac{w}{w_c}}$$
, avec

 $w_c = \frac{1}{RC}$, ou $w_c = \frac{R}{L}$, H₀ gain statique (gain à très basse fréquence)

- Représentation dans le plan de Bode

$$|H(jw)| = \frac{H_0}{\sqrt{1 + \left(\frac{w}{w_c}\right)^2}}, \quad \varphi = \arg(|H(jw)|) = \operatorname{arct}g(0) - \operatorname{arct}g\left(\frac{w}{w_c}\right)$$

$$H_{dB} = 20\log(H_0) - 10\log\left(1 + \left(\frac{w}{w_c}\right)^2\right)$$

- Etude de l'asymptote basses fréquences (lorsque ω tend vers 0)

Pour
$$\frac{w}{w_c} \ll 1$$
, ou $w < \frac{w_c}{10}$,

 $|H(jw)| = H_0 \ et \ H_{dB} = 20 \log(H_0) \ dB \rightarrow \textbf{diagramme de gain} \ a \ une \ asymptote \ y_1(w) = 20 \log(H_0)$

 $\lim_{w\to 0} \varphi = 0$, \to diagramme de phase a une asymptote horizontale en 0

- Etude de l'asymptote hautes fréquences (lorsque ω tend vers ∞)

$$\frac{w}{w_c} \gg 1$$
, ou $w > 10w_c$, $|H(jw)| = \frac{H_0 w_c}{w}$ et $H_{dB} = 20\log{(H_0 w_c)} - 20\log{(w)}$

 \rightarrow diagramme de gain a une asymptote oblique $y_2(w) = 20 \log(H_0 w_c) - 20 \log(w)$

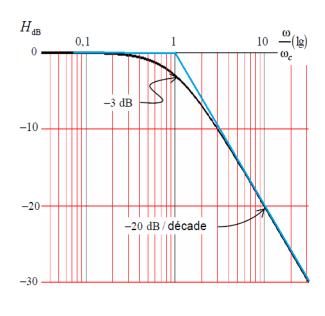
$$\lim_{w\to\infty}\varphi=arg\left(\frac{H_0w_c}{jw}\right)=-\frac{\pi}{2} \to \textbf{diagramme de phase} \ a \ une \ asymptote \ horizontale \ \grave{a} \ -\frac{\pi}{2}$$

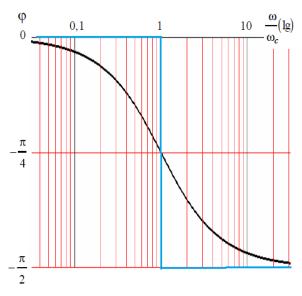
- BEtude de points particuliers du diagramme

$$w=w_c \ , \ |H(jw)|=\frac{H_0}{\sqrt{2}} \ , H_{dB}=20{\rm log}\left(H_0\right)-20\log\!\left(\sqrt{2}\right)=H_{MAX}-3dB$$

$$\varphi=-\frac{\pi}{4}$$

- Diagramme de Bode (asymptotique et réel) du circuit passe-bas d'ordre 1





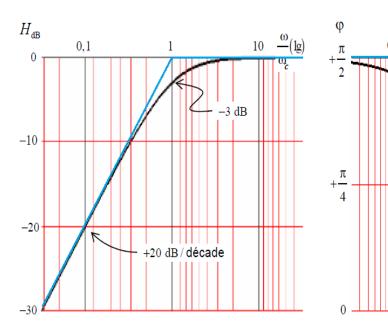
- Filtre passe haut

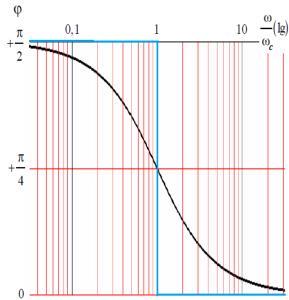
$$H(jw) = H_0 \frac{j\frac{w}{w_c}}{1+j\frac{w}{w_c}}$$
, $w_c = \frac{1}{RC}$, ou $w_c = \frac{R}{L}$, H_0 gain statique (gain à très basse fréquence)

$$|H(jw)| = \frac{H_0 \frac{w}{w_c}}{\sqrt{1 + \left(\frac{w}{w_c}\right)^2}} = \frac{H_0}{\sqrt{1 + \left(\frac{w_c}{w}\right)^2}} = , \varphi = \arg(|H(jw)|) = \arctan(0) + \arctan\left(\frac{w_c}{w}\right)$$

$$H_{dB} = 20\log(H_0) - 10\log\left(1 + \left(\frac{w_c}{w}\right)^2\right)$$

$$w \to 0: \begin{cases} H_{dB} = 20log\left(\frac{w}{w_c}\right) \\ \varphi = \frac{\pi}{2} \end{cases}, \ w \to \infty: \begin{cases} H_{dB} = 20log(H_0) \\ \varphi = 0 \end{cases}$$





Filtres passifs d'ordre 2

- Filtre R,L,C passe-bas

$$H(jw) = H_0 \frac{\frac{1}{jCw}}{\frac{1}{jCw} + R + jLw} = \frac{H_0}{1 + jRCw - LCw^2} = \frac{H_0}{1 - \left(\frac{w}{w_c}\right)^2 + j\frac{1}{Q}\left(\frac{w}{w_c}\right)}$$

- Formes asymptotiques

$$H_{dB} = 20log(H_0) - 10log\left(\left(1 - \left(\frac{w}{w_c}\right)^2\right)^2 + \frac{1}{Q^2}\left(\frac{w}{w_c}\right)\right)$$

$$w \to 0$$
:
$$\begin{cases} H_{dB} = 20log(H_0) \\ \varphi = 0 \end{cases}, \qquad w \to \infty : \begin{cases} H_{dB} = 20log(H_0) - 40log\left(\frac{w}{w_c}\right) \\ \varphi = -\pi \end{cases}$$

$$w = w_c : \begin{cases} H_{dB} = 20log(H_0) + 20log(Q) \\ \varphi = -\frac{\pi}{2} \end{cases}$$

Posons $x = \frac{w}{w_c}$

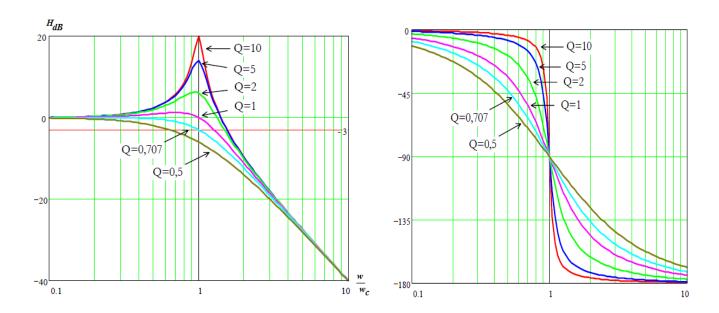
Module du dénominateur
$$|D| = \left[(1-x)^2 + \frac{x}{Q^2} \right]^{-\frac{1}{2}} \rightarrow |D|^2 = (1-x)^2 + \frac{x}{Q^2}, \quad \frac{d^2|D|^2}{dx^2} = 2 > 0$$

Pour $Q \le \frac{1}{\sqrt{2}}$, le module du gain est une fonction monotone décroissante de ω .

Pour $Q > \frac{1}{\sqrt{2}}$ le module du gain passe par un maximum H_1 pour une pulsation w_1 inferieur à la pulsation de coupure

$$H_1 = H_0 rac{Q}{\sqrt{1 - rac{1}{4Q^2}}}$$
 , et $w_1 = w_c \sqrt{1 - rac{1}{2Q^2}}$

- Diagramme de gain et de phase pour différentes valeurs de Q pour H₀=1



- Filtre passe haut d'ordre 2 (même chose que Passe bas d'ordre 2) à faire !!

- Filtre passe-bande

$$H(jw) = H_0 \frac{R}{R + j\left(Lw - \frac{1}{Cw}\right)} = \frac{H_0}{1 + j\left(\frac{Lw}{R} - \frac{1}{RCw}\right)} = H_0 \frac{1 - jQ\left(x - \frac{1}{x}\right)}{1 + Q^2\left(x - \frac{1}{x}\right)^2}$$

$$|H(jw)| = \frac{H_0}{\left[1 + Q^2\left(x - \frac{1}{x}\right)^2\right]^{\frac{1}{2}}} \quad , \quad \varphi = \operatorname{arctg}\left(-Q\left(x - \frac{1}{x}\right)\right)$$

Pour toute valeur du facteur de qualité, le gain est maximal pour x = 1, avec H = 1. La bande passante est définie comme l'intervalle de pulsations pour lesquelles $H \ge H_{MAX}$; calculons les pulsations de coupure correspondant à ces gains :

$$\left[1 + Q^2 \left(x_c - \frac{1}{x_c}\right)^2\right]^{-\frac{1}{2}} = \frac{1}{\sqrt{2}} \implies x_c - \frac{1}{x_c} = \mp \frac{1}{Q}, \ x_c^2 - \frac{x}{Q} - 1 = 0 \implies x_{1,2} = \frac{1}{2Q} \pm \sqrt{\frac{1}{4Q} + 1}$$

- Formes asymptotiques

$$H_{dB} = 20\log(H_0) - 10\log\left(1 + Q^2\left(x - \frac{1}{x}\right)^2\right)$$

$$w \to 0: \begin{cases} H_{dB} = 20 \log(H_0) + 20 \log\left(\frac{x}{Q}\right) \\ \varphi = \frac{\pi}{2} \end{cases}, \qquad w \to \infty: \begin{cases} H_{dB} = 20 \log\left(H_0\right) - 20 \log(xQ) \\ \varphi = -\frac{\pi}{2} \end{cases}$$

$$w = w_c : H_{dB} = 20 \log(H_0), \qquad \varphi = 0$$

Les asymptotes se coupent en $\log(x)=0$, avec $H_{dB}=20\log(H_0)-20\log(Q)$. Elles sont au-dessus de l'axe HdB=0

Lorsque $\,Q < 1.\,$ De plus, le déphasage est nul à la résonance. On peut finalement tracer le diagramme de Bode du filtre.

