
Module : Electrification des mines Année : 2019/2020

Exercice de révision :

Dans le circuit électrique de la figure ci-contre circule un courant d'intensité I=1.5 A. Les résistances ont pour valeurs : R_1 =3.3 Ω , R_2 =4.7 Ω , R_3 =8.2 Ω . La résistance interne R_0 du générateur est de 0.5 Ω .

On demande de trouver:

- 1. La résistance équivalente entre A et D
- 2. La tension (ddp) aux bornes de chaque résistance
- 3. La tension V_{AC}
- 4. La FEM du générateur et la tension à ses bornes
- 5. La puissance délivrée par le générateur, la puissance dissipée par effet joule et la puissance utile
- 6. Le rendement du générateur
- 7. Faites un bilan des puissances.

Module : Electrification des mines Année : 2019/2020

Série d'exercices n°1

Exercice n° 1:

Dans le circuit ci-contre :

- 1) Calculer U_{EF} ,
- **2**) Calculer l'intensité I_0 circulant dans la branche principale ;
- 3) Calculer l'intensité I' circulant dans la branche contenant le générateur E' (préciser son sens);
- 4) Calculer les intensités i_1 , i_2 et i_3 .

Données:

$$R = 1 \Omega$$
, $E = 5 V$ et $E' = 3 V$.

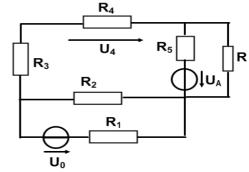
Exercice n°2:

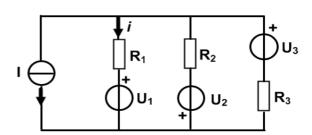
1) Etablir un système d'équations permettant de calculer tous les courants et tensions de branches. Calculer U_4 à l'aide de ce système d'équations.

2) Calculer U_4 en utilisant le théorème de Thévenin. Comparez.

$$\underline{\textit{Donn\'ees:}}\ R_1{=}R_4{=}5\ \Omega$$
 , $R_2{=}R_5{=}R_6{=}10\ \Omega$, $R_3{=}20\ \Omega$ $U_A{=}\ 20\ V$, $U_0{=}\ 10\ V.$

Calculer le courant *i* du circuit ci-contre en utilisant le théorème de superposition.


On donne:

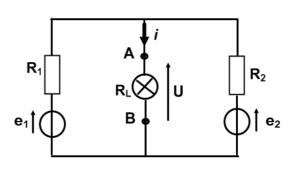

$$R_1 = R_2 = R_3 = 100 \Omega$$

 $U_1 = 150 \text{ V}$
 $U_2 = 300 \text{ V}$

 $O_2 = 300 \text{ V}$

 $U_3 = 600 \text{ V}$

I = 9 A



Exercice n°4:

Soit le circuit électrique à deux sources (Fig.ci-contre).

- 1) Exprimer la tension_u et le courant i en utilisant le théorème de superposition.
- 2) Déterminer ses modèles de Thévenin et de Norton.

